
     

Whakaratonga Iwi – Serving Our People   |   fireandemergency.nz 

 

  

THE USE OF OPEN ACCESS SATELLITE DATA TO 
IDENTIFY WILDFIRE FUEL TYPES 

March 2021  
 



 

 

   

 

 

 

 

 

   

      
 

 

 

 

 
 



Orbica - The use of open access satellite data to identify wildfire fuel types.   1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________________________________________________________________________________________ 

 
   DATE:  

   15 March 2021 

Version 4.0 (Contains variation) 

Kurt.joy@orbica.World 

 

  

The use of open access satellite data to identify 

wildfire fuel types 

Fire and Emergency New Zealand 



Orbica - The use of open access satellite data to identify wildfire fuel types.   2 

  



Orbica - The use of open access satellite data to identify wildfire fuel types.   3 

EXECUTIVE SUMMARY 

 

This document reports on the findings of work undertaken by Orbica for Fire and Emergency 

New Zealand (FENZ), the key focus being to address the questions: 

“Can open-access satellite imagery be used to augment current land use datasets? And if 

so, can this be used to regularly update wildfire fuel types?” 

Sentinel-2 satellite data, collected and released by the European Space Agency, has 10 m 

ground resolution, 12 bands and a five-day revisit time. Given these characteristics and 

combined with computational machine learning algorithms, Sentinel-2 makes an excellent 

choice for this project. Using these techniques, several key wildfire fuel classes were tested 

to see if a Sentinel and machine learning approach could aid in the creation of updated 

datasets for: Urban expansion, hedgerows and shelter belts, broom/gorse, water bodies and 

exotic forestry. 

Our work shows that with enough training data, and in settings where a medium scale spatial 

resolution is appropriate, data can be produced using a variety of semi and/or automated 

image segmentation tools. Using open-source software and programming libraries (i.e. free) 

extra value can be added to datasets such as the Landcare LCDB or LUCAS from the 

Ministry for the Environment. Taking such an approach allows datasets, with a typical five-

year update time, to be updated on a far more regular basis, and down to five days if 

necessary. Only one of the assessments, that of forestry age, was deemed unsuitable for 

Sentinel-2. In this case LINZ aerial imagery, proved more effective when combined with 

CNN deep learning models. 

The ability of these models to be automated was also considered. Several possible 

scenarios for semi/fully automated processing pipelines have been suggested for integration 

within the FENZ infrastructure. Options include: Timed release (i.e. quarterly) or on demand 

(i.e. ad-hoc processing, running on local or cloud computing). All these options depend on 

budget (5-200k NZD), delivery times and available hardware. 
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GLOSSARY 

 

AI Artificial Intelligence 

AOI  Area of Interest 

API Application Programming Interface 

CNN Convolutional Neural Network 

COH Copernicus Open Access Hub 

ECAN Environment Canterbury 

EO Earth observation 

ESA European Space Agency 

FCIR  False colour infrared  

FENZ  Fire and Emergency New Zealand 

GPU Graphic Processing Unit 

GSD  Ground Surface Distance 

IOU Intersection Over Union 

L1A  Level 1, Top of Atmosphere calibration 

L2C Level 2, Bottom of Atmosphere calibration 

LCDB Land Cover Database 

LINZ  Land Information New Zealand 

LUCAS  Land Use and Carbon Analysis System 

MS Multi-spectral 

MSI Multi Spectral Imagery 

 

NASA  National Administration and Space Agency 

NDWI Normalised Difference Wetness Index 

NDVI Normalised Difference Vegetation Index 

NRT  Near Real time Tasking 

NZD  New Zealand Dollars 

QA Quality Assessment 

QC Quality control 

RS Remote Sensing 

RGB Red, Green, Blue 

S2 Sentinel-2 

SAR Synthetic aperture radar 

SWIR Shortwave Infrared 

SVM Support Vector Machines 

TIR Thermal infrared 

USD United States Dollars 

USGS United States Geological Survey 

VISNIR Visible / Near Infrared spectrum 

WMS Web mapping service 

WFS Web feature service 

WV3  World View 3 
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1. PROJECT BACKGROUND AND SCOPE 

As a proxy for vegetative fuel distribution throughout New Zealand, Fire and Emergency 

New Zealand (FENZ) use land cover vegetation datasets to support the assessment of 

wildfire risk around the country. Typically, this has been in the form of the Land Cover 

Database (LCDB) released by Landcare Research–Maanaki Whenua. Unfortunately, there 

are two underlying problems with the use of this dataset: 

• Only periodically updated and is proving to be less reliable the older it is. 

• With time, it has also evolved, and subclasses have been aggregated. This is 

particularly problematic in the case of exotic forestry where eight classes are now 

merged to a single class. 

The use of such outdated or aggregated data reduces the accuracy of any wildfire risk 

assessment and thus FENZ cannot adequately assess this with a high level of certainty. 

With the work of Scion now identifying and modelling up to 50 discrete fuel types (pers 

comms), an annually updated land cover dataset aligned to the fuel types would provide 

FENZ with a far more up to date picture of vegetation fuel types and their associated fire 

potential.  

Given the problem, Orbica was tasked with assessing: 

• The changes in the various releases of the LCDB 

• If the LCDB is still a valid output to use within fire modelling such as Prometheus and 

other risk/threat identification tools 

• If the LCDB can be expanded to include further breakdown of the fuel classes, such 

as generating different forestry age classes and the separation of gorse and broom. 

The following report prepared by Orbica evaluates the use of open-access satellite imagery 

with machine-learning techniques to identify various fuel classes. It is hoped that the 

successful automated identification of fuel classes will enable them to be used in annual 

updates to wildfire risk assessment, at least in terms of the fuel hazard. FENZ has identified 

five key fuel classes that are either spatially incorrect or are missing within the various LCDB 

datasets.  

These fuel classes are:  

• Exotic forest plantations 

• Shelterbelts and hedgerows 

• Gorse and broom scrub 

• Urban area expansion 

• Water bodies. Rivers, streams, lakes, and ponds. 
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2. SATELLITE IMAGERY CONSIDERATIONS 

With all remote sensing (RS) projects that employ orbitally acquired data, five primary 

attributes drive the choice of imagery to be used. 1) Instrument choice, 2) temporal 

resolution, 3) spectral resolution, 4) spatial resolution and 5) acquisition cost. 

Unfortunately, it is typically the latter that is the major limitation on the type of imagery 

employed in RS projects. The gold standard in satellite derived imagery is the multispectral 

imagery (MSI) from the Digital Globe/Maxar Worldview constellation, particularly Worldview 

3 (WV3). Eight bands with a spatial resolution of 1.2 m can be pan-sharpened to 0.3 m daily, 

providing the highest quality imagery available. But this data comes with a price - near real 

time tasking (NRT) costs approximately $27 USD for 1 km2 (minimum 100 km2 per order).  

Given the expense of the data, what other sources can be leveraged? ESA and USGS have 

long running Earth observation (EO) programmes in which the data is open access under 

creative commons licenses. Data from these are used widely in landscape change and water 

quality monitoring studies. With a spatial resolution of 15 m, 12 spectral bands, and an 

orbital revisit time of ~12 days, the latest generation (Landsat-8) continues a USGS EO 

programme that has been running since 1972. Although the Landsat data is well published 

in the literature, it is now being replaced with that from a European Space Agency (ESA) 

programme named Copernicus. As part of this programme several satellites with higher 

spatial resolution and shorter revisit times makes then more useful when considering time-

based studies (Table 1). 

 

Table 1: A list of USGS and ESA platforms that supply open access data. The type of onboard 
instrument or sensor is classified as multispectral (MS), synthetic aperture radar (SAR), thermal 
infrared (TIR) and spectrometer (SPEC). The final imagery requirement is the determining factor 

about what type of platform is employed for space-based observation. 

 

Satellite / 

Platform 
Source Date Range 

Revisit 

Time  

Sensor 

 Type 
Bands Resolution 

LANDSAT 5 USGS 1984-2011 16 days MS/TIR 6/1 60 m 

LANDSAT 7 USGS 1999-2018 16 days MS 7/1 15-60 m 

LANDSAT 8 USGS 2013- 16 days MS/TIR 9/2 15-100 m 

LANDSAT 9 USGS 2020- 16 days MS/TIR 9/2 15-100 m 

SENTINEL 1A/B ESA 2014/2016 - 6 days SAR N/A 9-93 m 

SENTINEL 2A/B ESA 2015/2017- 6 days MS 12 10-60 m 

SENTINEL 3A/B ESA 2016/2018 6 days SPEC 21 300-1200 m 

SENTINEL 5P ESA 2017- 16 days SPEC 3 5500 m 

 

While initially a commercial programme, in 2009 the United States Geological Survey 

(USGS) Landsat programme gave users free access to all data via its web portal 

(https://earthexplorer.usgs.gov/). In contrast, the ESA Copernicus program was built around 

a central tenet of open access data, either via the Copernicus Open Access Hub 

https://earthexplorer.usgs.gov/).
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(https://scihub.copernicus.eu/) or an application programming interface (API). When 

comparing such free imagery to that from commercial providers such as Maxar (i.e. 

Worldview), Airbus (i.e. Pleiades) and Planet (i.e. Rapid eye), the principal differences are 1) 

Surface resolution (i.e. ground surface distance or GSD), 2) revisit time and 3) tasking ability 

(Table 2).  In most cases, commercial imagery has considerably higher spatial resolution, 

usually by several orders of magnitude, and has a sub-daily revisit time.  

 

Table 2: Comparison between Sentinel-2 and commercial satellites. Archive cost is based on data 
being >90 days old. Additional <5% cloud free guarantee costs an extra 50%. 2019 Retail prices 
obtained from Landinfo (http://www.landinfo.com/satellite-imagery-pricing.html). Note that some 

platforms do not have a tasked pricing or a minimum required area. 

 

Satellite / 

Platform 

Type 

(Band) 

Cost per Km2 

(ARCHIVE/NRT/TASKED) 

Maximum 

Resolution 

 (px / m2) 

Revisit 

Time 

(Days) 

Minimum 

Area (KM2) 

(Archived/Tasked) 

SENTINEL-2 MSI 

(12) 

Free 10 6 None 

WORLDVIEW 

1 

 (1) $14 / $24 / $48 0.5 1 25km2 /100km2 

WORLDVIEW 

3 

MSI 

(16) 

$14 / $17 / $48 0.3 <1 25km2 /100km2 

RAPIDEYE MSI (5) $1 / $6 / NA 5 1 500 km2 

PLEADIES-1 MSI (5) $12 / $21 / $36 0.5 1 25km2 /100km2 

IKONOS MSI (5) $10 / NA / $35 0.8 <3 25km2 /100km2 

 

But for many tasks where a high temporal resolution is required, the ongoing costs 

associated with commercial imagery acquired daily or weekly can be crippling, particularly in 

a location like New Zealand, where the lack of cloud free days can be problematic. 

Therefore, to insure against the probability of cloudy images an additional 25-50% increase 

to acquisition may need to be applied to ensure that imagery will be under the 5% cloud 

threshold. 

For example, an event occurs on a known date that needs to be analysed, therefore, 

imagery immediately prior to and post event within the NRT period must be purchased. 

Additionally, as the spatial extent of the event is relatively small, WV-3 imagery must be 

purchased with <5% cloud cover (Table 3). 

  

https://scihub.copernicus.eu/
http://www.landinfo.com/satellite-imagery-pricing.html


Orbica - The use of open access satellite data to identify wildfire fuel types.   11 

Table 3: Example costing for a simple, prior/post RS task. Prices based on Landpro.com (4/13/2018) 

 

Imagery prior to event:   $29 usd per km2 (minimum 100km2) = $2900 usd 

 <5% cloud cover guarantee = $1450 usd 

Imagery post event:   $29 usd per km2 (minimum 100km2) = $2900 usd 

 <5% cloud cover guarantee = $1450 usd 

 

Converting it from USD to NZD we get a cost of ~$13,000. An expensive exercise, even if 

treated as a worst-case scenario. Given this cost, it is easy to imagine organisations being 

extremely cautious in such an approach, thus the use of lower resolution imagery, even with 

their caveats, can be a powerful alternative. 

Even with lower spatial and temporal resolution, the open access imagery of platforms such 

as Sentinel can provide a sandbox for testing and building RS solutions for land change 

monitoring that is de-risked compared to that of commercial imagery (Figure 1).  

 

 

Figure 1: Example of commercial 0.6m Quickbird-2 (left) vs open access 10m Sentinel-2 (right) 
imagery for an area south of Whangamata in the Bay of Plenty. Approximately ten years separate the 

two images (QB-2 2009, S-2 2019). 

 

If the target of interest is large enough and the period of identification (i.e. dates pre- and 

post-event) is coarse enough, such data is a viable solution even within a production 

environment. Therefore, for the purposes of this report, the use of Sentinel-2 imagery 

provides a perfect source of data to test: whether open access imagery can be used for 

vegetation classification? and is it a viable alternative to commercial imagery? 
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2.1. SENTINEL-2 MULTISPECTRAL IMAGERY (MSI) 

Optical multispectral imagery (MSI) is a passive remote sensing technique and requires 

some form of illumination (i.e. the sun) to achieve results. Therefore, this data is not only 

constrained to daytime use but is also heavily affected by cloud cover. This is in stark 

contrast to the radar data acquired by the Sentinel-1 platform, in which actively emitted C-

band microwaves self-illuminate a scene and clouds do not affect the data. 

Multispectral imaging refers to the ability of an instrument to measure electromagnetic 

radiation outside of that visible by the human eye. The area of the electromagnetic spectrum 

(Figure 2) of interest in remote sensing applications is typically 350nm (blue) into 750nm 

(red), commonly referred to as visual range (i.e. radiation able to be seen by the naked eye). 

Beyond that, 750-2300 nm is infrared, which cannot be seen by eye but is absorbed by 

certain pigments and water.  

 

Figure 2: The electromagnetic spectrum. Light green regions in the lower panel show atmospheric 
windows and dark blue is the spectral response of the sun (image from Dutton Institute, Penn State). 

 

Multispectral bands, or zones of measured radiation, are defined by wavelengths that can be 

transmitted though the atmosphere un-attenuated. This is especially pertinent to bands 

within the near infrared (NIR) range where they are heavily affected by atmospheric water 

vapour. Thus, the band selection of bands is relatively constrained for use for remote 

sensing applications and is similar between instruments on different orbital platforms. 

 

2.1.1. SENTINEL-2 TECHNICAL DATA 

The Sentinel-2A spacecraft was launched in June 2015, with its sister, Sentinel-2B, in orbit 

in 2017. The satellites are part of an optical imaging mission to collect global change 

datasets on vegetation, soil, and water. Additionally, the missions provide atmospheric 

absorption and distortion data corrections at high resolution to provide enhanced continuity 

of data so far provided by SPOT-5 and Landsat-7 platforms. 

Given a global dataset focus, the revisit requirements for Sentinel-2 are better than or equal 

to seven days over all landmasses and inland waters. As with S1A and S1B, the paired 

satellites allow a considerably shorter revisit and both follow the same 100-minute orbit, but 
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180° apart. This allows maximum coverage, and each satellite collects ~149 million km2 of 

imagery per orbit (approximately 1.6 Tb). Therefore, in a single day (~15 orbits), the 

Sentinel-2 spacecraft transmit ~50 Tb of raw data back to earth via a combination of 

dedicated ground stations and orbital relay satellites. 

The primary instrumentation is a push broom type multispectral imager (MSI) featuring a 

swath of 285 km with 13 bands covering a spectral range of 442-2200 nm at a variety of 

resolutions (Table 4).  

 

Table 4: Spectral bands available for Sentinel-2. Central wavelength is calculated as the mean of S2A 
and S2B instruments 

 

Band Name 
Central 

wavelength (nm) 

Bandwidth 

(nm FWHM) 

Resolution 

(m) 

1 Atmospheric correction (aerosols) 443 21 60x60 

2 Blue 493 66 10x10 

3 Green 560 36 10x10 

4 Red 665 31 10x10 

5 Red edge 1 704 15 20x20 

6 Red edge 2 740 15 20x20 

7 Red edge 3 783 22 20x20 

8 NIR 833 106 10x10 

8a Red edge 4 865 21 20x20 

9 Atmospheric correction (water) 944 20 60x60 

10 Cirrus correction 1375 31 60x60 

11 SWIR 1 1612 91 20x20 

12 SWIR 2 2195 175 20x20 

 

The lack of a true panchromatic band should be noted and may be a problem in applications 

where pan-sharpening is required.  As only the main VISNIR bands (4, 3, 2 and 8) have the 

maximum resolution, one technique to bypass this limitation is to make a single band 

composite from any three of the higher resolution (10 m) bands and apply this as a 

sharpening filter (e.g. Gram Schmitt) to the lower resolution bands (20-60 m). 
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2.2. DATA DISSEMINATION AND ACCESS 

2.2.1. COPERNICUS OPEN ACCESS HUB (COH) 

Given the purpose of the Copernicus programme is to provide open data for Earth 

observation, the dissemination and analysis tools are a key component. As the data itself is 

open source, several third-party companies have emerged as data distributors, with their 

selling point being easier data access, via web services, or easier analytics, via APIs. The 

following discussion looks at the advantages and disadvantages of one such system, 

Synergises’ Sentinel-hub (https://sentinel-hub.com/) versus the Copernicus open access 

hub.  

 

2.2.2. SENTINEL HUB 

A different approach to data access is provided by third party companies such as Sinergise. 

The Sinergise paradigm is that instead of end-users interacting with, and processing, raw 

data from ESA, users have access to curated global datasets. Sentinel-Hub (www.sentinel-

hub.com) provides users a more simplistic way to view data, but also a fully featured python 

API with machine learning, data cube storage and analytic tools. Sentinel Hub is a paid 

service that has several tiers, that provide a range of processing units and access based on 

research / commercial use (Table 5).  

 

Table 5: Pricing breakdown for Sentinel Hub as of February 2020 (https://sentinel-hub.com/pricing-
plans) 

 

 
Get 

Started 

Individual  

(non-

commercial) 

Individual 

(commercial) 

Enterprise 

(Basic) 

Enterprise 

(Enlarged) 

Price Free ~$277 nzd/yr ~$1700 

nzd/yr 

~$10000 

nzd/yr 

~$20000 nzd/yr 

Raw data 

download 
N Y Y Y Y 

Web services N Y Y Y Y 

API N Y Y Y Y 

Rate limits 

(Requests per 

minute/ processing 

units per month) 

NA 300/30k 500/50k 600/200k 600/500k 

Non-Commercial 

use 
Y Y Y Y Y 

Number of users 1 1 1 ∞ ∞ 

Mobile apps N N N Y Y 

https://sentinel-hub.com/
https://orbica-my.sharepoint.com/personal/kurt_joy_orbica_world/Documents/www.sentinel-hub.com
https://orbica-my.sharepoint.com/personal/kurt_joy_orbica_world/Documents/www.sentinel-hub.com
https://sentinel-hub.com/pricing-plans
https://sentinel-hub.com/pricing-plans
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2.2.3. SERVICES 

A key strength of the Sentinel Hub suite of tools is the ability to use rendered on the fly 

imagery. While the initial selection is limited, a user can import a range of pre-existing or 

their own custom spectral indices. Within Sentinel Hub, a configuration tool allows the 

creation of multiple instances, each with their own API key, that can include any number of 

Web mapping service (WMS) endpoints. Each of which contains a JavaScript configuration 

script that can be filtered by date and tile-level cloud cover. The custom configuration script 

also allows a user to define: 

• Histogram stretching 

• Visualisation type 

• Symbology 

• Band combination. 

Sentinel Hub also provides several easy to access web-based tools. Sentinel playground 

and EO browser are the “Google Maps” of satellite data in the Sentinel-Hub world. Sentinel 

playground (https://sentinel-hub.com/explore/sentinel-playground) is the most simplistic and 

provides the user with a series of pre-processed data that can be explored. Filtering is basic, 

by date, location, and cloud cover, but playground gives instant access to a variety of global 

Sentinel-2 visualised data products (Figure 3).  

 

 

Figure 3: Sentinel Playground screen capture of Tripoli, Libya on the 12/6/2016. Data is a false colour 
(12, 4, 2) SWIR composite that highlights the regional geology. 

 

EO-Brower is a more analytically focused product and requires a Sinergise account to 

access (Figure 4). As well as Sentinel platforms (S1, S2, S3 and S5P), several other freely 

accessible satellite datasets can be browsed and analysed (Table 6). Additionally, several 

other products, including the ASTER global elevation model, are available via the NASA 

Global Imagery Browser Service (GIBS, 

https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=2228230). 

https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=2228230
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Figure 4: EO Browser showing NDVI for the Mahia Peninsular in Hawkes Bay. 

 

Table 6: Additional open access datasets available via EO Browser. 
 

Name Revisit 
Resolution 

(Spatial) 
Date range Description 

LANDSAT 

(5,6,7,8) 

16 

days 

0.003 – 0.1 

km 
1984-present 

Multispectral including thermal.  

4-11 bands (432-12100 nm) 

MODIS 
1-2 

days 
0.25-1 km 1999- present 

Multispectral including thermal.  

36 bands (400-15000 nm) 

MERIS 3 days 0.25 km 2002-2012 
Vegetation and ocean monitoring.  

15 bands (290-1040 nm) 

Proba-V 
1-10 

days 

0.1, 0.33, 1 

km 
2001- present 

Vegetation monitoring. 

Four bands (BLUE, RED, NIR, SWIR) 
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3. LANDCOVER DATABASE COMPARISON 

A key dataset used in Prometheus and FENZs wildfire threat modelling is the NZ Land 

Cover Database (LCDB) produced by Landcare Research-Manaaki Whenua. It is a 

comprehensive land cover classification, grouping together similar land cover types based 

on satellite imagery into a shared taxonomy.  

Several important updates have been made since the release of the dataset, particularly 

versions 2 (2002) and 5 (2020). Although version 5 is the most up to date and provides the 

most accurate picture of a real vegetation cover, the decision was made to integrate and 

merge several subclasses in later releases (Table 7).  

This has led to a situation where the most up to date dataset in a spatial context (v5 in 2020) 

does not contain the required resolution in discrete land classes. The trade-off for having 

more detailed land cover classes is that data is out of data by ~18 years, increasing the 

ambiguity of the fuel types which therefore reduces the ability to accurately model fire 

damage potential. 

FENZ have been primarily using LCDB2 as inputs into their threat assessment model, due to 

the higher resolution of land classes, and thus possible wildfire fuel types. But the 

acknowledged “elephant” in the room is the age and thus validity of the data’s spatial extent. 

Although version 5 is recognised as being more up to date, the merging of subclasses, 

particularly in the “Exotic forestry” class is a stumbling block to the adoption of LCDB5.  
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Table 7: A comparison of LCDB class codes between versions 2 and 4 

 

 

 

 LCDB V2 LCDB V4 AND ONWARD 
 Class Code Class Name Class Code Class Name 

OTHER   0 Not land (used in V5 onwards) 

ARTIFICIAL 

SURFACES 

1 Built up area (Settlement) 1 Built up area (Settlement) 

2 Urban parkland / Open space 2 Urban parkland / Open space 

3 Surface mine 6 Surface mines and dumps 

4 Dump   

5 Transportation infrastructure 5 Transportation infrastructure 

BARE OR 

LIGHTLY 

VEGETATED 

SURFACES 

10 Coastal sand and gravel 10 Sand and gravel 

11 River and lakeshore gravel and 

rock 

16 Gravel and rock 

13 Alpine gravel and rock   

12 Landslide 12 Landslide 

14 Permanent snow and ice 14 Permanent snow and ice 

15 Alpine grass/herb field 15 Alpine grass/herb field 

WATER 

BODIES 

20 Lake and pond 20 Lake and pond 

21 River 21 River 

22 Estuarine open water 22 Estuarine open water 

CROPLAND 

30 Short-rotation cropland 30 Short-rotation cropland 

31 Vineyard 33 Orchard, vineyard, and other perennial 

crops 

32 Orchard and other perennial crops   

GRASSLAND

, 

SEDGELAND, 

AND 

MARSHLAND 

40 High producing exotic grassland 40 High producing exotic grassland 

41 Low producing grassland 41 Low producing grassland 

42 Tall tussock grassland 42 Tall tussock grassland 

44 Depleted grassland 44 Depleted grassland 

45 Herbaceous freshwater vegetation 45 Herbaceous freshwater vegetation 

46 Herbaceous saline vegetation 46 Herbaceous saline vegetation 

47 Flaxland 47 Flaxland 

SCRUB AND 

SHRUBLAND

S 

50 Fern land 50 fenland 

51 Gorse and/or Broom 51 Gorse and/or Broom 

52 Manuka and/or Kanuka 52 Manuka and/or Kanuka 

53 Matagouri 58 Matagouri and/or grey scrub 

57 Grey scrub   

54 Broadleaf indigenous hardwoods 54 Broadleaf indigenous hardwoods 

55 Sub-alpine shrubland 55 Sub-alpine shrubland 

56 Mixed-exotic shrubland 56 Mixed-exotic shrubland 

55 Peat shrubland (Chatham Island 

only) 

80 Peat shrubland (Chatham Island only) 

56 Dune shrubland (Chatham Island 

only) 

81 Dune shrubland (Chatham Island only) 

FOREST 

60 Minor shelterbelts 71 Exotic forests 

61 Major shelterbelts   

62 Afforestation (not imaged)   

63 Afforestation (imaged post-lcdb1)   

65 Pine forest – open canopy   

66 Pine forest – closed canopy   

67 Other exotic forest   

64 Forest – harvested 64 Forest – harvested 

68 Deciduous hardwoods 68 Deciduous hardwoods 

69 Indigenous forest 69 Indigenous forest 

70 Mangrove 70 Mangrove 
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3.1. AREA CHANGE COMPARISONS 

Quantifying the changes between LCDB2 and LCDB5 is key to understanding the net gain 

and loss in classified land area. Those classes that have undergone aggregation between 

the different LCDB versions are especially important, as the overall areal change in a class 

may be caused by the reorganisation of classes and not change of area. Thus, to gauge the 

overall change in classified land area, the focus of the following section is on those classes 

which have significant change in Table 8. 

 

Table 8: Top ten classes with changes to land area by classification across New Zealand from LCDB2 
to LCDB5 

 

Given these changes, land classes with the highest variability have been investigated to 

understand what land class changes have occurred in the nearly two-decade period 

between the two LCDB releases, and what the class has changed from/to. It should be noted 

that land changes between two very different classes are more likely to be actual land 

changes, such as grasslands or trees, in contrast to those land changes within the same 

class. This change could also be interpreted as a change in the methodology used to 

calculate land cover classes. 

 

 

 

LCDB class name 

 

LCDB2 

area (ha) 

LCDB5 

area (ha) 

Area 

Change 

(ha) 

Percentage 

Change 

 (v2 to v5) 

High Producing Exotic Grassland  8,892,102 8,684,362 -207,740 -2% 

Indigenous Forest  6,463,806 6,307,010 -156,796 -2% 

Broadleaved Indigenous Hardwoods  540,009 696,531 156,522 3% 

Low Producing Grassland  1,653,145 1,754,076 100,930 1% 

Exotic Forest  1,741,475 1,838,310 96,835 1% 

Depleted Tussock Grassland  250,608 169,501 -81,107 -3% 

Tall Tussock Grassland  2,397,576 2,335,410 -62,166 -0.5% 

Sub Alpine Shrubland  385,658 432,966 47,308 1% 

Herbaceous Freshwater Vegetation  88,782 129,097 40,315 5% 

Forest Harvested  234,943 199,483 -35,460 -2% 
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3.1.1. GREATEST ABSOLUTE CHANGE IN AREA 

“High Producing Exotic Grassland” has seen the greatest decrease with a change of 

207,740 ha from LCDB2 to LCDB5, with approximately half attributed to a switch to the 

“Exotic Forest” class (Figure 5).  Interestingly, almost 20% has remained as productive land 

and has been converted into cropland with a further 10% being converted into built up or 

urban land. A possible reason for the latter is the expansion of urban margins into the 

relatively clear surrounding rural margins.  

 

 

The class with the greatest increase is “Broadleaved Indigenous Hardwoods” which has 

increased 156,522 ha from LCDB2 to LCDB5. Two thirds of this value were previously 

classified as “Manuka and/or Kanuka” and “Exotic Forest” in LCDB2 (Figure 6).  This may be 

a result of a combination of either forest-to-forest conversion or a change in the algorithm 

used to calculate land cover classes. One fifth was high and low producing grassland in 

LCDB2. This is likely to be from landowners planting or allowing reversion to indigenous 

species to occur. 

Figure 5: The primary classes that High Producing Exotic Grassland in 2001 has become in 2018. 
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3.1.2. GREATEST RELATIVE CHANGE IN AREA 

The greatest relative decrease in area has occurred within the “Depleted Grassland” class 

which has decreased 3% or 81,107 ha from LCDB2 to LCDB5. Almost 90% remains as 

grassland although has been reclassified as either low or high producing (Figure 7).  A likely 

explanation for this change may be due to landowners improving grass quality or a change 

in the algorithm used to calculate land cover classes.  

“Herbaceous Freshwater Vegetation” is the class with greatest relative increase in area, with 

an increase of 5%, or 40,315 ha) from LCDB2 to LCDB5 (Figure 8). Half of this increase 

came from land previously classified as Deciduous Hardwoods, with much of the remaining 

area previously classed as grassland or lake/pond. The change in area is likely the result of 

land being reverted or converted to wetlands and water drainage areas.   

  

Figure 6: Chart shows what Broadleaved Indigenous Hardwoods in 2018 were in 2001, excluding 
Broadleaved Indigenous Hardwoods 
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Figure 7: Depleted Grasslands conversion from 2001 to 2018. 

Figure 8: Herbaceous Freshwater Vegetation conversion from 2001 to 2018, excluding Herbaceous 
Freshwater Vegetation 
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4. CASE STUDY 1: EXOTIC FORESTRY 

FENZ are currently using the forest classifications from LCDB to identify exotic forest. 

Unfortunately, in a review post 2002, a number of these classes were merged in later 

releases of the LCDB, resulting in a broader, and less useful classification to FENZ. 

Additionally, the review did not appear to address some errors in the classification method.  

The LCDB is only updated every five years whereas the forest industry is extremely dynamic 

and changes to vegetation and landscape can occur daily. To keep up with these rapid 

changes, annually updated forest classifications are far better suited to reflect the current 

state of the environment in the forestry sector. Therefore, to aid the classification of exotic 

forestry, Sentinel-2 satellite imagery has been used in conjunction with machine learning 

techniques to separate exotic from native afforestation. 

As previously stated, a key change in the classification system of “Forest” between LCDB2 

to LCDB5 is the removal/aggregation of the underlying subunits, in particular the 

“Shelterbelts” and “Planted forest” sub-classifications. The effect of this aggregation has led 

to the classification becoming less detailed, as the seven classes used in LCDB2 (classes 

60-67 excluding 64) have been combined into class 71 in LCDB5 (Table 9). 

 

Table 9: Forest sub-classes in LCDB2 (2nd and 3rd columns) and LCDB4 to 5 (4th and 5th columns). 

 LCDB V2 LCDB V4 AND ONWARD 

 Class 

Code 
Class Name 

Class 

Code 
Class Name 

FOREST 

60 Minor shelterbelts 71 Exotic forests 

61 Major shelterbelts   

62 Afforestation (not imaged)   

63 Afforestation (imaged post-

lcdb1) 

  

65 Pine forest – open canopy   

66 Pine forest – closed canopy   

67 Other exotic forest   

64 Forest – harvested 64 Forest – harvested 

 

To investigate the simplification of forestry classifications between the various LCDB 

releases, a representative study area is shown in Figure 9.  
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Figure 9: LCDB2 (left) showing forestry sub-classes – light green: open canopy pine, dark green: 
closed canopy pine, yellow: other exotic forest, pink: afforested varieties. LCDB5 (right) showing the 

exotic forestry class. Blue represents harvested areas in both. 

 

On first comparison, it is clear the delineation of different forestry fuel classes has been lost, 

but the overall extent of forestry has undergone little change. As a result, there will be a 

negative impact on the ability to determine fire behaviour in the different forestry fuel 

classes. The blue areas identified as harvested are accurately represented when compared 

with aerial imagery. 

The Ministry for the Environment’s Land-use and Carbon Analysis System (LUCAS) 2016 

Forest classification also shows similar forest extents. Unfortunately, LUCAS only identifies 

forestry as pre-1990 or post-1989 and does not identify harvested areas.  

As well as issues surrounding the aggregation of classes, there are also occurrences of 

legacy errors in classification methodology that persist through multiple revisions of the 

LCDB.   

Observed throughout the datasets, there are cases where algorithms used to calculate 

classes are not correctly identifying forestry. For example, there are parcels that were 

identified as “Exotic Forest” in LCDB2 and remain as such in LCDB5, yet they were not 

visible as exotic forest in 2018. This appears to be a legacy issue where at one point in time, 

the land may have been correctly, or incorrectly, classified as exotic forest and in later 

iterations the algorithm has not picked up on land use change, yet the classification remains. 

An example of this is shown below in Figure 10, where the two pink highlighted parcels are 

defined as Exotic Forest in LCDB5, but the underlying imagery from 2018 shows no forestry.  
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4.1. COLOUR SHIFTING CLASSIFICATION 

Often the consistency and quality of colours in satellite imagery can vary depending on the 

location and time of year they were captured. Typically, sensor calibration is an important 

part of a postprocessing workflow to produce images that are matched in absolute 

reflectance values, colour, and gamma (brightness). In some cases, the ability to modify and 

exaggerate the colour of an image can be an extremely powerful technique in isolating or 

highlighting different features or classes. 

In Sentinel-Hub (Section 2.2.2) colour properties can be adjusted to suit the users' needs. By 

increasing the gain, or brightness, the image becomes saturated and results in amplified 

colours. For forestry, the level of green shown in the image is of most interest as well as the 

influence of red and blue bands. Figure 11 shows an area of mixed native and exotic forestry 

and the effects of increasing image gain (brightness) and the strength of the red and blue 

channels. With an aim to isolate native from exotic vegetation, the right panel of Figure 11 

below shows that an optimal colour would increase the gain while reducing the strength of 

the red and blue bands.   

Figure 10: LCDB5 "Exotic Forest" parcels (left) overlaid on 2018 aerial imagery (right) 
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Figure 11: The effects of altering image gain on forested areas. High gain (left), medium to high gain 
(middle), and high gain with low red and blue values (right). 

 

4.2. DEEP LEARNING CLASSIFICATION 

To trial an artificial intelligence approach to image classification and segmentation, a 

commercially planted exotic forest area in Tasman has been selected. Spatial data of 

forestry stands provided by Onefortyone (https://onefortyone.com/) is for an AOI that 

contains a mix of ages within an active plantation initially established in 1936. The current 

crop is second or third rotation (Figure 12). 

. 

Figure 12: The Golden Downs study area identified by Onefortyone that contains a mix of species and 

rotations. 

https://onefortyone.com/
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The data provided by Onefortyone defines several stands with obvious boundary lines of 

exotic forestry in proximity to native regeneration. To create training data for an AI analysis, 

the establishment date attribute field was used to code each stand into four main groups. 

• Type 1: Exotic vegetation 1936 to 1974. 

• Type 2: Non-exotic gully vegetation. 

• Type 3: Exotic stand planted 2006 to 2010. 

• Type 4: Exotic stand planted post 2011 to 2014. 

 

4.3. AERIAL IMAGERY 

The imagery we initially trialled was the 0.3 m Rural Aerial Photos (2016-2017) from Land 

Information New Zealand. The left side of Figure 13 shows the simplified Onefortyone 

plantation data with scrub and skids removed, and the right side with the final training 

dataset. The training data contained older exotic plantations (1936-1974 Type 1) and forests 

planted post 2006-2010 (Type 3), the latter comprising the majority of the AOI. Some 

classes were not included, these being the newly established Type 4 (cleared in 2014) and 

the gullies between plantations, likely a mix of native species (Type 2). To increase the 

training data within the area, Type 3 data was expanded in the area to the southeast. 

 

 

 

  

Figure 13: (Left) Training data supplied by Onefortyone from oldest to youngest: Type 1 (1937-
1974, Yellow), Type 3 (2006-2010 Pink) and type 4 (2011-2014 Purple).  

(Right) Two class expanded training data comprised of older (red) and younger-middle aged 
exotic plantations (green). Note that the remaining 5 km2 of the AOI is used for model testing. 
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The deep learning AI model uses a convolutional neural network algorithm (CNN) to classify 

into  

• Old growth exotic forestry (i.e. Type 1) 

• Young or mid rotation exotic forestry (i.e. Type 3). 

 

The preliminary results using the LINZ high resolution aerial imagery are shown in Figure 14.  

 

 

Figure 14: The two-class model prediction for the AOI shown in Figure 13. Red areas are older (1937-
1974) and green areas represent younger exotic planting (2006 – 2010). 

 

Overall, the model has done a good job at picking up concentrated areas of each 

classification but requires additional training and post processing to address the variegation 

and between native and exotic. A summary of the results (Table 10) shows a training IOU 
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(intersection over union) accuracy of ~93%, and a final visual QA of the results by a human 

analyst suggest a final testing accuracy of 85%. 

 

Table 10: Model run times and IOU accuracy scores. 

 Training Validation  Testing  

Number of images 

used 
1 

(1500 smaller patches) 

1  

(340 smaller patches)  

1 

(5000 smaller patches) 

Time in minutes 120 min 1 min 2 min 

Model loss 

(Error Rate %) 
0.0128 0.0138  

Accuracy (IOU) 0.9345 0.9073 0.85 (QA/QC) 

 

Given the limited amount of training data (one tile), the CNN model did extremely well in 

identifying native vs exotic forests within the AOI. The ability of CNN to incorporate the 

context of the training pixels (i.e. shape, texture, colour variation) to learn from shows the 

strength of the technique in this application. 

  

4.4. SENTINEL IMAGERY 

The use of the LINZ imagery combined with CNN algorithms proved that identifying forestry 

classes, and possibly age, can be achieved using high resolution imagery. Unfortunately, 

this may not be realistically achievable using Sentinel satellite data, due to its significantly 

lower resolution. To additionally test this hypothesis, several Sentinel-2 raw and derived data 

products acquired on 17/08/2019 were also tested using the same training AOI.  

The Normalised Difference Vegetation Index (NDVI) is a spectral index that employs 

Sentinel-2 very near infrared (B8) and red (B4) bands. 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅(𝐵8) − 𝑅𝐸𝐷(𝐵4))

(𝑁𝐼𝑅(𝐵8) + 𝑅𝐸𝐷(𝐵4))
 

 

The NDVI shows the relative reflectance of chlorophyll absorption and is sensitive to 

variations in both chlorophyll concentrations and leaf area. Therefore, it provides a plant 

health metric that is generally unaffected by illumination variations and soil effects. 

As shown in Figure 15, the AOI of forestry, supplied by Onefortyone and used in the 

previous examples, shows brighter values (heathier vegetation) in the younger exotic 

plantings (Figure 15, right bottom) and darker values in the older exotic vegetation (Figure 

15, right top).  
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Another method to highlight changes in vegetation is the use of False Colour Infrared  

 

In this technique, instead of calculating an index using a combination of bands, the 

visualised bands are swapped around. So instead of a true colour representation of the data 

where: 

 

𝑅𝐺𝐵 = 𝑅(𝐵4) 𝐺(𝐵3) 𝐵(𝐵2) 

 

Bands are swapped around, and an infrared band is included. So that the red band colour is 

replaced with NIR, green with red, and blue with green. 

 

𝐹𝐶𝐼𝑅 = 𝑅(𝐵8) 𝐺(𝐵4) 𝐵(𝐵3) 

 

The advantage of this technique is that it can highlight the spectral difference within an AOI 

and thus aid in the interpretation of complex imagery. As with the NDVI technique, False-

colour infrared (FCIR) for the area (Figure 16) shows only minor visual changes between 

type 1 and type 2 forestry. This lack of differentiation between bands is also observed in the 

true colour imagery (Figure 17), where shadowing may play a role. 

 

Figure 15: (Left) Normalised Difference Vegetation Index (NDVI) of the AOI (white box) 
overlain with the Onefortyone training data (Black). Side panels show areas of old-growth 
(Right top) and younger (right bottom) exotic forestry. Darker colours show less healthy 

vegetation and bare ground, and the lighter the reverse. 
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Given the lack of pixel resolution in the Sentinel-2 imagery (10-60 m) compared to that of the 

LINZ 0.03 m imagery and the lack of differentiation between the various band combinations 

presented above, can machine learning techniques be employed? 

Unsupervised K-means clustering was assessed as a method to group the pixel values into 

discrete units. Unfortunately, the use of CNN requires far more training data for use with the 

Sentinel imagery. The provided AOI is approximately 15000 Sentinel-2 pixels compared to 

the 17 million LINZ aerial pixels found in the same extent. These values mean that the same 

Figure 16: (Left) False-colour infrared (FCIR) of the AOI (white box) overlain with the 
Onefortyone training data (Black). Side panels show areas of old-growth (right top) and 

younger (right bottom) exotic forestry. 

 

Figure 17: (Left) True colour (RGB) of the AOI (white box) overlain with the Onefortyone training 
data (Black). Side panels show areas of old-growth (right top) and younger (right bottom) exotic 

forestry. 
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CNN algorithm has orders of magnitude less pixels to learn off, which in the context of shape 

and texture can radically reduce the efficiency of the model. 

The technique was applied to the NDVI, FCIR, and RGB true colour imagery (Figures 15, 16 

and 17 above) to generate 4-5 clusters or groups of similar pixel values. Our results show 

that true colour RGB imagery, and NDVI produced the most successful clustering out of the 

various multi and single band layers respectively, the result of which is shown in Figures 18 

and 19.  

 

Figure 18: K means clustering (n=5) on single band Sentinel NDVI 

 

Figure 19: K means clustering (n=5) on multiband Sentinel RGB 

 

As seen from the result shown in the above Figures, K-means clustering produced mixed 

results within the training area. The single band NDVI data (with values from -1 to +1), when 

clustered into five groups shows some good classification between various species. It does a 

good job of separating exotics to the east and south of the training data polygon, and 

additionally classifies both the older stand and the gully vegetation as indigenous. 

Unfortunately, it also misclassifies the exotic planting to the west of the image as indigenous 

species. This is in stark contrast to the true colour imagery. When the three colour bands (R, 
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G and B, all with 8-bit values from 0-255) are clustered into four groups, the K means 

method performs badly within the training area. Basically, classifying into slope aspect and 

shadowing (Figure 19 above). 

Overall, the use of machine learning, and geostatistical techniques do show promise in the 

detection of indigenous vs native forestry, and possibly the age of exotic forestry. Although 

the above is a simple example of machine learning, and supplied only with a limited training 

dataset, it demonstrates the power of such algorithms applied to satellite imagery.  

Colour shifting to enhance specific regions of greenness, appears to be a useful tool in 

separating, albeit qualitatively, tree species in homogenous plantations or stands. In contrast 

the use of CNN deep learning techniques, is particularly powerful and even a relatively small 

training dataset can be used on high resolution imagery to produce mapping of stands at the 

>80% level. 

Unfortunately, training data with far larger extents are required to apply deep learning 

techniques to sentinel imagery, and the alternative, K-means clustering, modelled clusters 

relatively poorly compared to the CNN results. 

To increase the accuracy and to assist with model training for afforested exotic forest and 

exotic forest blocks of different ages several additional points can be considered. 

• The data supplied by Onefortyone was extremely valuable, and therefore it would be 

extremely beneficial to have more of these areas identified by forestry companies. 

These data, when used as model inputs, are precise and validated, eliminating 

assumptions made when selecting forest for different classifications. As expected, to 

leverage the maximum amount of value from such data, it would need to overlap with 

the acquisition of the imagery to effectively train the model. It is likely forestry data 

would only be required for the initial training of the model and not required on an 

ongoing basis, except when the model requires tuning. 

• The inclusion of additional bands of satellite imagery. While the use of Sentinel-2 

imagery in this report has typically been limited to true colour (3 band) imagery, 14 

bands of various wavelength are available to be used. 
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5. CASE STUDY 2: SHELTERBELT DETECTION 

Shelterbelts (e.g. windbreaks or hedgerows) are important infrastructure on farms across 

New Zealand as they provide protection from the elements to livestock and agricultural 

crops. Typically comprised of exotic species such as radiata pine or macrocarpa, they can 

form a barrier up to 15 m tall, a few metres wide and can span along fence lines for 

hundreds of metres. As such, shelterbelts create continuous fuel pathways which provide 

corridors for fire spread. They allow fire to travel in a direct path, ultimately enabling the fire 

to spread significant distances across areas where otherwise the dominant fuel type may be 

a limiting factor in terms of being less receptive to fire spread.  

The primary challenge with detecting shelterbelts from satellite imagery is due to the nature 

of their geometry and size. With the pixel size of Sentinel-2 satellite imagery (Section 2.1) 

being 10 x 10 m (100 m2), and the typical shelterbelt width being less than this, resolving 

such features can be problematic. Yet it is possible to train Artificial Intelligence (AI) 

algorithms to identify the dark green linear appearance of shelterbelts and windbreaks.  

Using Sentinel-2 imagery, AI feature identification was applied to automatically identify and 

extract shelterbelts and windbreaks in Canterbury. The AOI being 15 km2 of high producing 

grassland in the Rolleston / West Melton region that contains ~16 km of planted shelterbelts 

(Figure 20 Left).  Sentinel-2 data was downloaded from ESA and processed within the 

Python API to create average summer cloud free true colour imagery for the AOI.  

A convolutional neural network (CNN) deep learning architecture was developed that uses 

object-based image analysis. This type of AI feature segmentation identifies an object using 

not only the per-pixel RGB values found within a training area, but also the shape, geometry, 

and context of pixels within the image. As with all the techniques discussed here, training 

data was produced, initially as vector polygons, and then converted to the binary raster that 

the model will use to mask out the features of interest (Figure 20 Right). 

 

Figure 20: Sentinel-2 training image (left) with a binary raster representing known shelterbelts (right) 

 

In this case, the binary mask layer defines what a shelterbelt (Class 1, white) should appear 

like and captures its inherent variation. To increase the speed of learning, graphic processor 
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units (GPUs) were employed in parallel. By leveraging such hardware, processing speed is 

an order of magnitude faster, but requires the imagery to be subdivided into smaller regions. 

In this case the image was divided into patches of 128 X 128 pixels and then subdivided into 

training and validation datasets. In total 12 patches were produced from a single training 

image, and from this, nine patches were used to train the AI model and three patches were 

ringfenced for validating model performance on different areas. Table 11 compares training 

and validation results using several standard statistics used in assessing AI model 

performance. 

 

 

Table 11: Model accuracy and performance for shelterbelt detection 
 

  Training Patches 

(128X128)  

Validation Patches (128X128)  

Number of images used  9  3   

Time in minutes  15  1  

Model loss (Error Rate %)  0.0015  0.0138  

Jaccard Similarity Index 

(IOU)  

0.9345  0.8073  

Pixel based accuracy  0.9994  0.9970  

 

To assess model outputs, a CNN AI model was trained on a single AOI and then used to 

predict shelterbelts on a new unknown area. Typically, to generate accurate high performing 

models, approximately 10% of the total area to be predicted on would be provided as 

correctly labelled training data. In this example, only a single tile of 16 km2 was used as an 

input to the model, Figure 21 (left) showing the result of the trained model predicting 

shelterbelts in a confined AOI while Figure 21 (right) displays a new area in which the AI has 

not been exposed to, and thus completely untested. While the model output may appear to 

resolve the features poorly, quality control checks show the model provides a 70% accuracy 

in detecting shelterbelts in Canterbury Grasslands. Not a bad result when the extremely 

limited amount of training data that was passed to the CNN model is considered.  
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Figure 21: CNN model outputs. Training data (left) and testing/prediction (right) 
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6. CASE STUDY 3: GORSE/BROOM SEASONAL IDENTIFICATION 

Gorse (Ulex europaeus) and Broom (Cytisus scoparius) are two competitive weed species 

that are similar in appearance, grow in the same environments and have a short 

establishment period (Figure 22). Due to this fact, the two species have been combined in 

LCDB. Although they appear similar, particularly at distance from the observer, both species 

respond considerably differently to fire. Gorse is a significant contributor to fire risk due to its 

ability to ignite fast and burn hot, having the potential to spread fire fast. It’s area of local 

extent can also contribute to large areas of fire extent. This is particularly concerning in 

summer when the winds are hot, and conditions are dry. Broom on the other hand is difficult 

to burn and does not share the same fire behaviour characteristics of gorse. Because of this, 

it is important to distinguish between the two in relation to wildfire management.  

 

Two key differences between the species may aid in differentiation and allow the use of 

satellite and aerial imagery to map their extent, particularly where a mix of species can be 

found in one area. 

• Physiology. Gorse flowers in bloom have more of an orange-yellow hue than 

Broom, which has a brighter yellow colour. Although this may be a challenge 

to the human eye, it is possible to train software to delineate between the two. 

• Peak blooming time. Both species typically flower in spring and have separate 

blooming times which occur over a window of a couple of weeks to one 

month. The key challenge when delineating between Gorse and Broom from 

satellite imagery is pinpointing the moment when one bloom ramps up and 

the other winds down. Therefore, the winter flowering behaviour of Gorse is 

particularly helpful to identify if the spring bloom contains gorse or whether it 

is solely Broom.  

 

 

 

 

Figure 22: Gorse orange-yellow bloom (left) and Broom bright yellow bloom (right) 
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6.1. COLOUR DETECTION DELINEATION 

Like exotic forestry, colour shifting using the Sentinel-Hub EO-Browser (Section 2.2.2) allows 

greater variability in the display of different hues of yellow. This method has been 

successfully applied to explore the temporal change in yellow flowers in an AOI in the hills 

above Akaroa in Canterbury. Figure 23 shows a time sequence that shows the progression 

from dark yellow on 3rd October through to bright yellow on 27th November. These images 

show how the extent of yellow changes in conjunction with the shade of yellow supporting 

the different blooming time of Gorse and Broom.  

 

 

Figure 23: Yellow flower bloom over time 

 

Assuming the blooming time of Broom in Canterbury to be November, a test was done 

comparing areas identified by Environment Canterbury (ECan) (Figure 24) with Sentinel-2 

imagery (Figure 25). The ECan features are mostly correct in their location when compared 

with the bright yellow blooms in the satellite imagery.   

 

 

Figure 24: Areas identified by ECan as being predominantly broom.  Purple – dominant, Orange – 
common, Blue – frequent 
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Figure 25: Sentinel-2 satellite imagery from 2019 showing a bright yellow bloom in mid-late 
November. 

 

A further examination into the LCDB2 classification in relation to gorse has occurred in 

Taupo (Figure 26), where a side-by-side comparison of the LCDB2 gorse classification and a 

colour shifted satellite image from mid-late November 2017 was undertaken. It appears that 

there is minimal crossover between the two, likely due to the difference in analysis times, 

and that Gorse in this area is no longer correct. Additionally, depending on the acquisition 

date of imagery that was used to create LCDB2, it also may not be Gorse. As shown in the 

Canterbury examples above, Broom also flowers in mid-late November and has a similar 

bright yellow flower to Gorse.  

 

 

Figure 26: LCDB2 classified gorse and broom in yellow (left), Satellite imagery (November 2017) 
showing yellow bloom (right) 
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6.2. TEMPORAL DETECTION DELINEATION 

Given that Gorse and Broom have similar coloured flowers, this may cause difficulties when 

attempting to delineate between the two in a mixed species setting. The use of a single date 

imagery source, even one of high resolution (i.e. Worldview 3), may not be adequate in 

providing an AI algorithm a chance to successfully identify a feature/species of choice. Given 

that the Sentinel-2 imagery used in this report is of medium spatial (i.e. 10 m/px), but 

relatively high temporal resolution (five-day revisit time), a different approach may be 

needed. 

Such an alternative to finding the colour difference between blooms is to employ the 

temporal component of flowering to determine if Gorse is present. Thus, extending the time 

component from a couple of weeks to several months may increase the probability of 

separating Gorse from Broom.  

The blooming period for Gorse is generally longer and earlier to that of Broom, typically 

beginning in mid-late winter and extending through spring and summer. In contrast, Broom 

tends to only flower during mid-late spring. Although the winter bloom of Gorse may be less 

dramatic than the spring bloom, it is still possible to detect its presence (Figure 27). 

 

 

Figure 27: Gorse bloom in winter (left) and spring (right). Note that these images have a different 
colour setting than those in Figure 23. 

 

To employ such a method would require image processing software and a customised 

yellow spectrum. Additionally, it would also take a month, or at least two weeks of images to 

determine if gorse or broom is present and the degree of change in the coverage. It would 

also be possible to determine the degree of change of average colour of each pixel to help 

detect the period where the bloom goes from an orange yellow to a brighter yellow to assist 

with species delineation.  

An example of this application would be if yellow is present only in November, its likely to be 

broom. But if yellow present from late August to late November, its likely gorse is present. 

The colour change analysis could assist in delineating where gorse and broom are present. 

Unfortunately, given that building custom colour stretches, waiting for the correct period and 

the number of images required is particularly time intensive, therefore it may only be 

financially viable to undertake this once a year. 
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6.3. IMAGE CLASSIFICATION 

To apply a machine learning methodology to the problem of Gorse/Broom detection and 

delineation, an AOI was chosen in the hills on either side of Akaroa Harbour. Sentinel-2 true 

colour imagery was collected for the period October to November where a clear shift in the 

extent of yellow vegetation was observed. The open-source image processing application 

Fiji (https://imagej.net/Fiji), was used to build a training dataset for the earlier part of the 

Gorse blooming period (Early October) and applied to a second time-slice in which Broom 

was likely to be flowering (November). 

The Sentinel-2 true colour imagery for the October 2017 period (Figure 28) shows Gorse as 

having a subdued orange/yellow colour and typically being restricted to the higher elevation 

ridgetops and their associated slopes. In contrast, in the November imagery (Figure 29), the 

same vegetation appears far brighter and has a smaller extent. While this is likely due to the 

differing blooming periods and species composition between the Gorse and Broom, it may 

also be related to hue and gamma differences between the two images. 

 

 

Figure 28: Sentinel-2 imagery from October 2017. 

 

Figure 29: Sentinel-2 imagery from November 2017. 

 

Using the Fiji software, key areas from the above imagery were extracted for use as training 

data. The classified results for each date were post processed to reduce any classification 

noise and are shown in Figures 30 and 31.  

https://imagej.net/Fiji
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Figure 30: Gorse areas identified in October imagery using the Fiji classifier. 

 

Figure 31: Gorse areas identified in November imagery using the Fiji classifier. 

 

We have shown that by using a range of techniques the separation of Gorse vs Broom is 

possible using Sentinel-2 data. Even with its lower resolution, the short revisit time of the 

satellites allows the temporal nature of blooming times between the two species to be 

quantified. 
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7. CASE STUDY 4: URBAN EXPANSION  

A key part of assessing the threat that wildfire poses to people and property is understanding 

the expansion of urban or peri-urban areas into the surrounding rural area. With changes to 

city limits and shifting population centres, the potential for proximity of residential and 

commercial properties to extensive areas of vegetation has increased. This is especially 

important when considering the risk posed by shelterbelts and windbreaks, commonly found 

in farm settings, as a fire corridor though the establishment of a continuous fuel pathway. 

Given these concerns, developing a methodology to enhance LCDB5, which is based on 

2018 data, will provide a clearer picture of potential risk to properties along the rural-urban 

interface. 

To examine the changes in urban and commercial expansion, Sentinel-2 imagery was 

obtained for January 2016 and 2020. Christchurch was chosen due to its extreme post-

earthquake population shift, in which residents in the affected Eastern and Central suburbs 

have relocated to Western and Northern areas.  

Imagery was created using the red and SWIRs band: 

 

𝐹𝐶𝑆𝑊𝐼𝑅 = 𝑅(𝐵12) 𝐺(𝐵11) 𝐵(𝐵4) 

 

Where Red = SWIR2 (Band 12), Green = SWIR 1 (Band 11) and Blue = Red (Band 4). The 

use of such a false colour band combination highlights the differences between the urban 

and rural areas between the two years (Figure 32). 

 

 

Figure 32: Sentinel-2 false imagery for Christchurch city in 2016 (Left) and 2020 (Right). 

 

An initial observation of the imagery shows the city as being comprised of two distinct pixel 

textures and colours.  

• Type 1. Light pixels. Located in regions with a high proportion of larger 

industrial and commercial warehouses and buildings. The large roofs, 
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typically galvanised or painted white, provide a highly reflective surface to all 

wavelengths. The central commercial corridor running east / west across the 

city is particularly obvious in Figure 32. 

• Type 2. Grey pixels. These represent the highest proportion of the city and 

are caused by a mosaic of residential dwellings and their associated gardens. 

Compared to that of the commercial zone, the different spectral responses 

from a range of vegetation, roof size and building material produce a more 

textured appearance in the imagery. Additionally, due to the smaller size of 

residential building compared to the 10 m pixel size resolved by the Sentinel-

2 imagery, the reflected wavelengths are a mix of building and vegetation.  

 

Using the false colour imagery, a relatively small number of areas (n=15) representing the 

above two types were digitised and provided to a Support Vector Machines (SVM) 

classification algorithm as training data. As the identification of urban areas is a binary 

problem (absence vs presence), the training data only needed to represent the variation 

observed.  

SVM excels in binary segmentation and thus the relatively simple set of input pixel types and 

limited training data have produced the outputs shown in Figure 33.  

 

 

Figure 33: Urban areas in 2016 (Left) and 2020 (Right) from the SVM model. 

 

Unsurprisingly the model shows an expansion of areas now classed as urban into the 

western formally rural areas, particularly around the towns of Rolleston, West Melton, and 

Lincoln. Both commercial/industrial and residential areas have been well segmented from 

the surrounding rural and peri-rural area. If the difference between the 2016 and 2020 data 

is calculated, the result is the areas of absolute change (Figure 34). Unfortunately, as can be 

seen, some areas of non-urban areas have been highlighted (i.e. wastewater ponds to the 

east). 
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Figure 34: Binary output showing areas of change from 2016 to 2020. 
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8. CASE STUDY 5: WATER BODY DETECTION  

 

While obviously not a wildfire fuel source, water availability is a key resource when 

considering rural fire operations in remote locations. This is especially pertinent to helicopter 

operations that use monsoon buckets and require access to open water bodies during 

wildfire outbreaks. Therefore, identifying and providing an up-to date dataset of suitable 

locations to collect or extract water is a key component of any wildfire response database. 

To explore the AI detection of water features, an AOI was defined that covered 

approximately a quarter of the Canterbury region. Within this area were located a range of 

surface water types such as lakes, ponds, reservoirs, lagoons, and rivers, all of which play 

an important role in wildfire management either as a water resource or a physical barrier to 

fire spread. To assess the use of AI in water detection 10 m resolution Sentinel-2 true-colour 

imagery was acquired from January 2016 to June 2019 and filtered to ensure less than 10% 

cloud cover (Figure 35).  

 

Figure 35: Sentinel-2 imagery used in the Canterbury region to assess water coverage. 

 

Additionally, to generate the required training data, the 2018 LINZ water body dataset was 

used to define areas of surface water. 

Using the Sentinel-2 imagery, a relatively standard band combination was used to enhance 

the detection of surface water, that being the Normalised Difference Wetness Index (NDWI) 

which is derived from the relative differences between the green (Band 3) and near infrared 

(Band 8).  
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For each image in the dataset, a label needs to be generated in a binary format which 

represents the actual water region. To do this the NDWI has a threshold value applied to 

extract all pixels that represent water and reduce pixel noise that might be observed within 

the dataset. Finally, to further clean the NDWI data, a range of negative data is applied as a 

masking function. Non-water features such as roads, buildings, and forests, are obtained 

from sources such as LINZ and Open Street Maps (https://www.openstreetmap.org/) and 

used to ensure accuracy of the training data (Figure 36). 

 

 

Figure 36: An example of steps required to produce training data. Sentinel-2 true colour imagery of 
Lake Pukaki (left), thresholded NDWI (centre) and vector polygon outputs (right, green lines). 

 

Like that of the shelterbelt example (Section 5), images are subdivided to allow the use of 

GPU acceleration. 60 Sentinel-2 training images are subdivided into 16000 patches 

(128x128 pixels), and further subsampled, with ~25% (n=4000) held back for use in 

validation. 

Convolution Neural Network (CNN) algorithms are trained on, and then tested, using several 

band combinations to assess for accuracy and model performance. 

• Three bands. True colour (RGB) only. 

• Four bands. True colour (RGB) + merged greyscale band. 

• Four bands. True colour (RGB) + NDWI band. 

The outcome of these tests produces several key parameters that are used in the tuning of 

the final model and by doing some QA/QC on the training and validation results, we can say 

that the model is >85% accurate (Table 12).  
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Table 12: Typical output of CNN training vs validation vs testing model. 
 

 

Final model outputs for the unknown testing areas are shown for lakes (Figure 37), braided 

rivers (Figure 38) and a mixture of water body types including alpine tarns and ponds (Figure 

39).  

 

 

Figure 37: Sentinel-2 true colour imagery (left) and the AI outputs (right) for Lake Ohau in South 
Canterbury. Note the lack of definition between lakes Middleton and Ohau (green box) likely due to 

incomplete classification in the AI processing pipeline. 

 

 Training Validation Testing 

Number of arrays 12066 4021 2681 

Number of images 45 15 10 

Model loss (%) 0.0098 0.0090 - 

Jaccard similarity (IOU) 0.8988 0.9022 - 



Orbica - The use of open access satellite data to identify wildfire fuel types.   49 

 

Figure 38: Sentinel-2 true colour imagery (left) and magnified view of the AI outputs (right) for the 
Rakaia River. 

 

Figure 39: Outputs from the CNN model when applied to the Lake Coleridge and upper Rakaia River 
area. 
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Results from this example show that the combination of CNN machine learning, and 

multispectral Sentinel-2 imagery can be used to extract areas of surface water with a fairly 

high level of accuracy. As always in small case study investigations like this example, 

additional steps could be added to increase accuracy and processing speed, while 

decreasing model error. In particular: 

 

• More training data. 

• Tuning of Hyperparameters to increase the model accuracy. 

• The addition of new imagery like thermal (Landsat 8) and other spectral 

bands (Sentinel-2) will increase the amount of input data pixels provided to 

the model and thus will help deep learning models to identify new features. 

• Adding more post processing to filter/remove noise from output predictions.   

• Investigate methods to improve class imbalances (i.e. the ratio between water 

and non-water pixels). 
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9. CONCLUSION 

The findings presented in this report show, albeit at a relatively basic level, that the use of 

machine learning and artificial intelligence algorithms can be used to identify and isolate key 

wildfire fuel types. As well as a deep dive on the class differences between LCDBv2 and v5, 

our results find: 

• The systematic errors observed between previous and current versions of 

LCDB may make the use of future releases problematic for the differentiation 

of wildfire fuel classes and associated fire behaviour modelling. 

• That given the correct amount and type of training data, machine-learning and 

artificial intelligence models can be used to detect a range of expanded-fuel 

classes, not current in LCDB5 and certainly not in LCDB2. 

• Sentinel-2 at 10 m/px provides an adequate spatial resolution for most 

purposes. Only shelterbelts with a width less than 10 m may be problematic. 

• Using colour and temporal shifting techniques, gorse and broom may be able 

to be separated at some level using their differing flower colour and blooming 

times. 

• Using aerial imagery, several exotic forestry classes can be identified. 

o Cleared areas (i.e. slash and cutover). 

o Different age classes. 

• Changes can be relatively easy to observe using several Sentinel-2 products. 

In cases where this is not possible, applying colour shifting techniques may 

increase the accuracy in the identification of native vs exotic forestry stands. 

• False colour imagery provides a solid platform for the detection of urban 

areas and thus the encroachment into rural areas. 

• Sentinel-2 NDWI data can be used to identify water features such as lakes 

and rivers throughout Canterbury. 

 

9.1. FUTURE RESEARCH DIRECTIONS 

Given that this research only touches on a limited number of fuel types, several areas where 

expanded work may be a benefit have been recognised.  

• More targeted work on fuel types. While good progress was made on 

recognising the extent of gorse vs broom, other mixed fuel types would also 

benefit from a closer view.  

• Grasslands. New Zealand has a variety of grass types, from dry alpine 

tussocks and wet marshlands. Currently most of these differing fuel types are 

clustered together into the ubiquitous LCDB “Grasslands” class which poses 

problems for determining fire behaviour. The identification of grassland extent 

and species is also important when considering the encroachment of urban 

areas. 

• Exotic vs native forestry. While the identification of exotic plantations was 

covered at a simple level, a more in-depth investigation would allow the 

development of a more robust AI model. If more forestry companies could 
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supply GIS data for the extent and species of plantations, this could be used 

as training data to drive a far more accurate model using satellite imagery. 

• Testing. Producing a small AOI with the AI generated features from this 

project and integrating them into LCDB5.  

• Full AI model. For this work, the discussed fuel types were treated as their 

own discrete entity, each having a range of imagery, processing, and 

algorithm types. Yet this is not the case as all these fuel types are a 

patchwork across the New Zealand landscape. Now with our understanding 

of how machine learning, and AI models react to the training data and the 

requirements needed to produce more accurate models, a proof-of-concept 

methodology using a single multiclassification AI model could be developed. 

This work could be done with a local view, being run on inhouse machines, or 

the initial start of a cloud-based solution (see below). 

 

9.2. IMPLEMENTATION 

Given the final option presented above, such an AI driven classification pipeline could be 

imagined in several ways, depending on the required timeliness of data delivery and update 

frequency. While estimated costs have been added, final costing may vary considerably 

based on the extent of the AOI being processed (All prices in NZD). 

▪ Timed release. In this scenario FENZ would subcontract the production of an 

augmented LCDB that adds/updates key vegetation fuel types as specified. 

This would be produced on local machines and would not require any cloud-

based technologies (i.e. AWS and Azure). This dataset would not be the 

latest snapshot of vegetation fuel types but be far more accurate than the 

currently employed version of LCDB. The frequency of releases could be 

biannually or annually as required.  

  Estimated cost per release: $20-40k. 

▪ On demand (ad-hoc) – local computing. A reactive approach would be that a 

targeted dataset, using an AOI defined by an active event, is produced when 

required. An advantage is that the latest imagery can be used and thus the 

dataset is the most update (within the five-day revisit time of Sentinel-2). This 

could also be combined with high resolution commercial imagery if required. 

  Estimated cost per event: $5-15K. 

▪ On demand – cloud computing. Like the above, but the entire process is 

based within a cloud-based infrastructure. In this situation, FENZ could have 

complete control of the process and outputs would be automatically 

generated on a weekly basis, or manually requested in the event of an active 

wildfire. This is a proactive approach where the latest data is constantly being 

produced. 

  Estimated cost for development and setup: $100-200k. 
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For all these scenarios, a web portal for operational and management purposes using this 

data can also be produced. The ability to provide “boots on the ground” firefighting personnel 

with mobile accessible data may be a powerful tool in the fight against wildfires. 
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